Wir bitten um Verständnis, dass es aufgrund der aktuellen Situation zu Verzögerungen bei der Auslieferung kommt.

Conrad Carlberg

Statistical Analysis with R and Microsoft Excel

Making the Transition for Statistical Analysis

Edition 1

Statistical Analysis with R and Microsoft Excel

Dieses Buch schon gelesen? Haben Sie dieses Buch gelesen?

Print-Ausgabe (das gedruckte Buch) Was ist das?

Best.Nr.
978-0-7897-5785-2
Umfang
272 Seiten
Erschienen am
15.11.2016
Sprache
Englisch
Versandkosten
Versandkostenfrei nach Deutschland und in die Schweiz
€ 36,37
Hinweis: Diesen Titel können Sie nicht direkt über uns bestellen. Bitte wenden Sie sich an Ihren örtlichen Buchhandel oder an den Versandbuchhandel.
Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs.

 

Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides readers through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool.



 Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs.

 

Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool.

 

Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you’ve finished, you’ll be comfortable using R to solve a wide spectrum of problems—including many you just couldn’t handle with Excel.

 

• Smoothly transition to R and its radically different user interface

• Leverage the R community’s immense library of packages

• Efficiently move data between Excel and R

• Use R’s DescTools for descriptive statistics, including bivariate analyses

• Perform regression analysis and statistical inference in R and Excel

• Analyze variance and covariance, including single-factor and factorial ANOVA

• Use R’s mlogit package and glm function for Solver-style logistic regression

• Analyze time series and principal components with R and Excel


Ihr Status: Sie sind nicht eingeloggt. Bitte loggen Sie sich ein um Zugang zu unseren Materialien zu bekommen.
Bitte beachten Sie, dass nicht bei allen Titeln Materialien zur Verfügung stehen.